
Linear Algebra I

11/11/2022, Friday, 15:00 – 17:00

 Null space and rank 12 + 4 = 16 pts

Consider the matrix M =

4 3 2 6
2 3 1 3
1 1 1 2

.

(a) Find the null space of M .

(b) Determine the rank of M .

Required Knowledge: Null space, reduced row echelon form, rank-nullity theo-
rem.

Solution:

1a: The null space of M is defined as N(M) = {x |Mx = 0}. To solve the system of linear
equations Mx = 0, we can put the matrix M into reduced row echelon form: 4 3 2 6

2 3 1 3
1 1 1 2

 1 ↔ 3
−−−−−−−→

 1 1 1 2
2 3 1 3
4 3 2 6


 1 1 1 2

2 3 1 3
4 3 2 6


2 ← 2 − 2 · 1
3 ← 3 − 4 · 1
−−−−−−−−−−−−−→

 1 1 1 2
0 1 −1 −1
0 −1 −2 −2


 1 1 1 2

0 1 −1 −1
0 −1 −2 −2

 3 ← 3 + 1 · 2
−−−−−−−−−−−−−→

 1 1 1 2
0 1 −1 −1
0 0 −3 −3


 1 1 1 2

0 1 −1 −1
0 0 −3 −3

 3 ← − 1
3 · 3−−−−−−−−−−−→

 1 1 1 2
0 1 −1 −1
0 0 1 1


 1 1 1 2

0 1 −1 −1
0 0 1 1


2 ← 2 + 1 · 3
1 ← 1 − 1 · 3
−−−−−−−−−−−−−→

 1 1 0 1
0 1 0 0
0 0 1 1


 1 1 0 1

0 1 0 0
0 0 1 1

 1 ← 1 − 1 · 2
−−−−−−−−−−−−−→

 1 0 0 1
0 1 0 0
0 0 1 1


Therefore, the lead variable are the first three and the fourth is a free variable. As such, we obtain
the general solution as

x =


−a

0
−a
a

 .



This results in

N(M) =



−a

0
−a
a

 | a ∈ F

 .

1b: From the rank-nullity theorem, we know that

rankM + nullM = 4.

Since nullM = 1, we obtain rankM = 3.



 Eigenvalues and eigenvectors 4 + 8 + 12 = 24 pts

Let a, b, c be real numbers and consider the matrix M =

0 a 0
b c a
0 b 0

 .
(a) Determine all values of a, b, c for which M has distinct eigenvalues.

(b) Determine all values of a, b, c for which M is unitarily diagonalizable.

(c) Take a = 1, b = 0, c = 1 and determine the Jordan canonical form of M .

Required Knowledge: Eigenvalues, eigenvectors, unitary diagonalization, Jordan
canonical form.

Solution:

2a: The charateristic polynomial of M is given by

pM (λ) =

∣∣∣∣∣∣
λ −a 0
−b λ− c −a
0 −b λ

∣∣∣∣∣∣ = λ2(λ− c)− 2abλ = λ(λ2 − cλ− 2ab).

Therefore, the eigenvalues are λ1 = 0 and λ2,3 = c∓
√
c2+8ab
2 . We can distinguish three cases:

c2 + 8ab < 0, c2 + 8ab = 0, and c2 + 8ab > 0.

• Case 1: c2 + 8ab < 0
In this case, λ2,3 are nonreal numbers that are conjugate of each other. Therefore, eigenvalues
are distinct.

• Case 2: c2 + 8ab = 0
In this case, λ2 = λ3 and hence eigenvalues are not distinct.

• Case 3: c2 + 8ab > 0
In this case, λ2 6= λ3. Note that λ2 = 0 or λ3 = 0 if and only if ab = 0. Therefore, eigenvalues
are distinct if and only if ab 6= 0.

Consequently, we see that the eigenvalues of M are distinct if and only if

c2 + 8ab < 0 or ab 6= 0.

2b: The matrix M is unitarily diagonalizable if and only if MTM = MMT . Note that

MTM =

0 b 0
a c b
0 a 0

0 a 0
b c a
0 b 0

 =

b2 bc ab
bc a2 + b2 + c2 ac
ab ac a2


and

MMT =

0 a 0
b c a
0 b 0

0 b 0
a c b
0 a 0

 =

a2 ac ab
ac a2 + b2 + c2 bc
ab bc b2

 .
Therefore, we see that MTM = MMT if and only if a2 = b2 and ac = bc. Note that a2 = b2 if
and only if a = b or a = −b. Also, note that ac = bc if and only if a = b or c = 0. Hence, we see
that M is unitarily diagonalizable if and only if a = b or

(
(a = −b) and c = 0

)
.

2c: If a = 1, b = 0, and c = 1, then we have

M =

0 1 0
0 1 1
0 0 0

 .



Since this is an upper triangular matrix, we see that the distinct eigenvalues are λ1 = 1 and λ2 = 0.
In order to find out the Jordan canonical form, we need to compute the Weyr characteristics for
each distinct eigenvalue.

For λ1 = 1, we have

λ1I −M =

1 −1 0
0 0 −1
0 0 1


Note that

rankλ1I −M = 2.

Also, note that

(λ1I −M)2 =

1 −1 1
0 0 −1
0 0 1


and

rank(λ1I −M)2 = 2.

Therefore, for this eigenvalue we have w1 = 3 − 2 = 1 and w2 = 2 − 2 = 0. This leads to κ = 1
and ρ1 = 1− 0 = 1. As expected, the Jordan block for this eigenvalue is 1× 1.

For λ2 = 0, we have

λ2I −M =

0 −1 0
0 −1 −1
0 0 0


Note that

rankλ2I −M = 2.

Also, note that

(λ2I −M)2 =

0 1 1
0 1 1
0 0 0


and

rank(λ2I −M)2 = 1.

Further, we have

(λ2I −M)3 =

0 −1 −1
0 −1 −1
0 0 0


and

rank(λ2I −M)3 = 1.

Therefore, for this eigenvalue we have w1 = 3− 2 = 1, w2 = 2− 1 = 1, and w3 = 1− 1 = 0. This
leads to κ = 2 and hence ρ1 = 1− 1 = 0 and ρ2 = 1− 0 = 1. Thus, we see that there is only one
2× 2 Jordan block for this eigenvalue.

Consequently, the Jordan form (up to permutations of Jordan blocks) is 1 0 0
0 0 1
0 0 0





 Unitary diagonalization 20 pts

Find an orthogonal diagonalizer for the matrix M =

 2 −1 1
−1 2 1

1 1 2

 .
Required Knowledge: Unitary diagonalization.

Solution:

3: Since M is real symmetric, it is diagonalizable with an orthogonal matrix. To find such a
diagonalizer, we proceed with finding the eigenvalues and eigenvectors. The characteristic poly-
nomial is

pM (λ) =

∣∣∣∣∣∣
λ− 2 1 −1

1 λ− 2 −1
−1 −1 λ− 2

∣∣∣∣∣∣ = (λ− 2)3 + 1 + 1− (λ− 2)− (λ− 2)− (λ− 2)

= (λ− 2)(λ2 − 4λ+ 4− 3) + 2

= (λ− 2)(λ2 − 4λ+ 1) + 2

= λ3 − 4λ2 + λ− 2λ2 + 8λ− 2 + 2

= λ3 − 6λ2 + 9λ = λ(λ− 3)2.

Therefore, the distinct eigenvalues are 0 and 3.
For the eigenvalue 0, the eigenvectors satisfy−2 1 −1

1 −2 −1
−1 −1 −2

x = 0.

Note that  −2 1 −1
1 −2 −1
−1 −1 −2

 1 ↔ 2
−−−−−−−→

 1 −2 −1
−2 1 −1
−1 −1 −2


 1 −2 −1
−2 1 −1
−1 −1 −2


2 ← 2 + 2 · 1
3 ← 3 + 1 · 1
−−−−−−−−−−−−−→

 1 −2 −1
0 −3 −3
0 −3 −3


 1 −2 −1

0 −3 −3
0 −3 −3

 3 ← 3 − 1 · 2
−−−−−−−−−−−−−→

 1 −2 −1
0 −3 −3
0 0 0


 1 −2 −1

0 −3 −3
0 −3 −3

 3 ← − 1
3 · 3−−−−−−−−−−−→

 1 −2 −1
0 1 1
0 0 0


 1 −2 −1

0 1 1
0 0 0

 1 ← 1 + 2 · 2
−−−−−−−−−−−−−→

 1 0 1
0 1 1
0 0 0


Therefore,

x =

 1
1
−1


is an eigenvector for eigenvalue 0. After normalizing, we obtain

y =
1√
3

 1
1
−1

 .



For the eigenvalue 3, the eigenvectors satisfy 1 1 −1
1 1 −1
−1 −1 1

x = 0.

Note that  1 1 −1
1 1 −1
−1 −1 1


2 ← 2 − 1 · 1
3 ← 3 + 1 · 1
−−−−−−−−−−−−−→

 1 1 −1
0 0 0
0 0 0


As such,

x1 =

 1
−1

0

 and x2 =

1
0
1


are eigenvectors for the eigenvalue 3. To orthonormalize these vectors, we first normalize x1:

y1 =
1

‖x1‖
x1 =

1√
2

 1
−1

0

 .
Then, we find

z2 = x2 − (yT
1 x2)y1 =

1
0
1

− 1√
2

1√
2

 1
−1

0

 =
1

2

1
1
2


Finally, we have

y2 =
1

‖z2‖
z2 =

1√
6

1
1
2

 .
Therefore, an orthogonal diagonalizer is

1√
3

1√
2

1√
6

1√
3
− 1√

2

1√
6

− 1√
3

0
2√
6
.


Indeed, we have

 2 −1 1
−1 2 1

1 1 2




1√
3

1√
2

1√
6

1√
3
− 1√

2

1√
6

− 1√
3

0
2√
6
.


=



0
3√
2

3√
6

0 − 3√
2

3√
6

0 0
6√
6


and 

1√
3

1√
2

1√
6

1√
3
− 1√

2

1√
6

− 1√
3

0
2√
6
.


0 0 0

0 3 0
0 0 3

 =



0
3√
2

3√
6

0 − 3√
2

3√
6

0 0
6√
6





This means that

 2 −1 1
−1 2 1

1 1 2

 =



1√
3

1√
2

1√
6

1√
3
− 1√

2

1√
6

− 1√
3

0
2√
6
.


0 0 0

0 3 0
0 0 3




1√
3

1√
2

1√
6

1√
3
− 1√

2

1√
6

− 1√
3

0
2√
6
.



−1

.



 Characteristic polynomial 3 + 2 + 3 + 2 + 10 + 10 = 30 pts

Let M be an 3× 3 matrix with pM (λ) = (λ2 + λ+ 1)(λ− 1).

(a) Find the eigenvalues of M .

(b) Find the trace and determinant of M .

(c) Can M be a Hermitian matrix? Justify your answer.

(d) Is M diagonalizable? Justify your answer.

(e) Find scalars a, b, c such that M11112022 = aM2 + bM + cI.

(f) Show that M is similar to MT .

Required Knowledge: Charasteristic polynomial, eigenvalues, similarity, Cayley-
Hamilton theorem.

Solution:

4a: Since eigenvalues are the roots of the characteristic polynomial, we se that the eigenvalues
of M are 1 and − 1

2 (1∓ i
√

3).

4b: Since the trace is the sum and the determinant is the product of eigenvalues, we see that
they are equal to, respectively, 0 and −1.

4c: Since eigenvalues of Hermitian matrices are real, we see that M cannot be a Hermitian
matrix.

4d: Since M has distinct eigenvalues, it is diagonalizable.

4e: Note that pM (λ) = (λ2 +λ+ 1)(λ− 1) = λ3− 1. Therefore, the Cayley-Hamilton theorem
implies that M3 = I. Since 11112022 = 3 ·3704007 + 1, we have M11112022 = M(M3)3704007 = M .
Therefore, we see that a = c = 0 and b = 1.

4f: Since M is diagonalizable, there exist a nonsingular matrix X and a diagonal matrix D
such that M = XDX−1. This implies that

D = X−1MX and MT = (X−1)TDTXT . (1)

Since D is diagonal, D = DT . Therefore, we have MT = (X−1)TX−1MXXT . Note that
(XXT )−1 = (X−1)TX. Consequently, M is similar to MT .


