Linear Algebra I

11/11/2022, Friday, 15:00-17:00

1 Null space and rank
$12+4=16 \mathrm{pts}$

Consider the matrix $M=\left[\begin{array}{llll}4 & 3 & 2 & 6 \\ 2 & 3 & 1 & 3 \\ 1 & 1 & 1 & 2\end{array}\right]$.
(a) Find the null space of M.
(b) Determine the rank of M.

REQUIRED KNOWLEDGE: Null space, reduced row echelon form, rank-nullity theorem.

Solution:

1a: The null space of M is defined as $N(M)=\{\boldsymbol{x} \mid M \boldsymbol{x}=\mathbf{0}\}$. To solve the system of linear equations $M \boldsymbol{x}=\mathbf{0}$, we can put the matrix M into reduced row echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
4 & 3 & 2 & 6 \\
2 & 3 & 1 & 3 \\
1 & 1 & 1 & 2
\end{array}\right] \xrightarrow{(1) \leftrightarrow(3)}\left[\begin{array}{llll}
1 & 1 & 1 & 2 \\
2 & 3 & 1 & 3 \\
4 & 3 & 2 & 6
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 1 & 1 & 2 \\
2 & 3 & 1 & 3 \\
4 & 3 & 2 & 6
\end{array}\right] \xrightarrow{(2) \leftarrow(2)-2 \cdot(1)}\left[\begin{array}{l}
(3)-4 \cdot(1)
\end{array}\left[\begin{array}{rrrr}
1 & 1 & 1 & 2 \\
0 & 1 & -1 & -1 \\
0 & -1 & -2 & -2
\end{array}\right]\right.} \\
& {\left[\begin{array}{rrrr}
1 & 1 & 1 & 2 \\
0 & 1 & -1 & -1 \\
0 & -1 & -2 & -2
\end{array}\right] \xrightarrow{(3)(3)+1 \cdot(2)}\left[\begin{array}{rrrr}
1 & 1 & 1 & 2 \\
0 & 1 & -1 & -1 \\
0 & 0 & -3 & -3
\end{array}\right]} \\
& {\left[\begin{array}{rrrr}
1 & 1 & 1 & 2 \\
0 & 1 & -1 & -1 \\
0 & 0 & -3 & -3
\end{array}\right] \xrightarrow{\left(3 \leftarrow-\frac{1}{3} \cdot(3)\right.}\left[\begin{array}{rrrr}
1 & 1 & 1 & 2 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
& \text { (2) } \leftarrow \text { (2) }+1 \cdot \text { (3) } \\
& {\left[\begin{array}{rrrr}
1 & 1 & 1 & 2 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow{(1) \leftarrow(1)-1 \cdot(3)}\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow{(1) \leftarrow(1)-1 \cdot(2)}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

Therefore, the lead variable are the first three and the fourth is a free variable. As such, we obtain the general solution as

$$
\boldsymbol{x}=\left[\begin{array}{r}
-a \\
0 \\
-a \\
a
\end{array}\right] .
$$

This results in

$$
N(M)=\left\{\left.\left[\begin{array}{r}
-a \\
0 \\
-a \\
a
\end{array}\right] \right\rvert\, a \in \mathbb{F}\right\}
$$

1b: From the rank-nullity theorem, we know that

$$
\operatorname{rank} M+\operatorname{null} M=4
$$

Since null $M=1$, we obtain $\operatorname{rank} M=3$.

Let a, b, c be real numbers and consider the matrix $M=\left[\begin{array}{lll}0 & a & 0 \\ b & c & a \\ 0 & b & 0\end{array}\right]$.
(a) Determine all values of a, b, c for which M has distinct eigenvalues.
(b) Determine all values of a, b, c for which M is unitarily diagonalizable.
(c) Take $a=1, b=0, c=1$ and determine the Jordan canonical form of M.

REQUIRED KNOWLEDGE: Eigenvalues, eigenvectors, unitary diagonalization, Jordan canonical form.

SOLUTION:

2a: The charateristic polynomial of M is given by

$$
p_{M}(\lambda)=\left|\begin{array}{ccc}
\lambda & -a & 0 \\
-b & \lambda-c & -a \\
0 & -b & \lambda
\end{array}\right|=\lambda^{2}(\lambda-c)-2 a b \lambda=\lambda\left(\lambda^{2}-c \lambda-2 a b\right)
$$

Therefore, the eigenvalues are $\lambda_{1}=0$ and $\lambda_{2,3}=\frac{c \mp \sqrt{c^{2}+8 a b}}{2}$. We can distinguish three cases: $c^{2}+8 a b<0, c^{2}+8 a b=0$, and $c^{2}+8 a b>0$.

- Case 1: $c^{2}+8 a b<0$

In this case, $\lambda_{2,3}$ are nonreal numbers that are conjugate of each other. Therefore, eigenvalues are distinct.

- Case 2: $c^{2}+8 a b=0$

In this case, $\lambda_{2}=\lambda_{3}$ and hence eigenvalues are not distinct.

- Case 3: $c^{2}+8 a b>0$

In this case, $\lambda_{2} \neq \lambda_{3}$. Note that $\lambda_{2}=0$ or $\lambda_{3}=0$ if and only if $a b=0$. Therefore, eigenvalues are distinct if and only if $a b \neq 0$.

Consequently, we see that the eigenvalues of M are distinct if and only if

$$
c^{2}+8 a b<0 \text { or } a b \neq 0
$$

2b: The matrix M is unitarily diagonalizable if and only if $M^{T} M=M M^{T}$. Note that

$$
M^{T} M=\left[\begin{array}{lll}
0 & b & 0 \\
a & c & b \\
0 & a & 0
\end{array}\right]\left[\begin{array}{lll}
0 & a & 0 \\
b & c & a \\
0 & b & 0
\end{array}\right]=\left[\begin{array}{ccc}
b^{2} & b c & a b \\
b c & a^{2}+b^{2}+c^{2} & a c \\
a b & a c & a^{2}
\end{array}\right]
$$

and

$$
M M^{T}=\left[\begin{array}{lll}
0 & a & 0 \\
b & c & a \\
0 & b & 0
\end{array}\right]\left[\begin{array}{lll}
0 & b & 0 \\
a & c & b \\
0 & a & 0
\end{array}\right]=\left[\begin{array}{ccc}
a^{2} & a c & a b \\
a c & a^{2}+b^{2}+c^{2} & b c \\
a b & b c & b^{2}
\end{array}\right]
$$

Therefore, we see that $M^{T} M=M M^{T}$ if and only if $a^{2}=b^{2}$ and $a c=b c$. Note that $a^{2}=b^{2}$ if and only if $a=b$ or $a=-b$. Also, note that $a c=b c$ if and only if $a=b$ or $c=0$. Hence, we see that M is unitarily diagonalizable if and only if $a=b$ or $((a=-b)$ and $c=0)$.

2c: If $a=1, b=0$, and $c=1$, then we have

$$
M=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Since this is an upper triangular matrix, we see that the distinct eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=0$. In order to find out the Jordan canonical form, we need to compute the Weyr characteristics for each distinct eigenvalue.

For $\lambda_{1}=1$, we have

$$
\lambda_{1} I-M=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Note that

$$
\operatorname{rank} \lambda_{1} I-M=2
$$

Also, note that

$$
\left(\lambda_{1} I-M\right)^{2}=\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\operatorname{rank}\left(\lambda_{1} I-M\right)^{2}=2
$$

Therefore, for this eigenvalue we have $w_{1}=3-2=1$ and $w_{2}=2-2=0$. This leads to $\kappa=1$ and $\rho_{1}=1-0=1$. As expected, the Jordan block for this eigenvalue is 1×1.

For $\lambda_{2}=0$, we have

$$
\lambda_{2} I-M=\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Note that

$$
\operatorname{rank} \lambda_{2} I-M=2
$$

Also, note that

$$
\left(\lambda_{2} I-M\right)^{2}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
\operatorname{rank}\left(\lambda_{2} I-M\right)^{2}=1
$$

Further, we have

$$
\left(\lambda_{2} I-M\right)^{3}=\left[\begin{array}{rrr}
0 & -1 & -1 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
\operatorname{rank}\left(\lambda_{2} I-M\right)^{3}=1
$$

Therefore, for this eigenvalue we have $w_{1}=3-2=1, w_{2}=2-1=1$, and $w_{3}=1-1=0$. This leads to $\kappa=2$ and hence $\rho_{1}=1-1=0$ and $\rho_{2}=1-0=1$. Thus, we see that there is only one 2×2 Jordan block for this eigenvalue.

Consequently, the Jordan form (up to permutations of Jordan blocks) is

$$
\left[\begin{array}{l|ll}
1 & 0 & 0 \\
\hline 0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Find an orthogonal diagonalizer for the matrix $M=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$.
Required Knowledge: Unitary diagonalization.

Solution:

3: Since M is real symmetric, it is diagonalizable with an orthogonal matrix. To find such a diagonalizer, we proceed with finding the eigenvalues and eigenvectors. The characteristic polynomial is

$$
\begin{aligned}
p_{M}(\lambda)=\left|\begin{array}{ccc}
\lambda-2 & 1 & -1 \\
1 & \lambda-2 & -1 \\
-1 & -1 & \lambda-2
\end{array}\right| & =(\lambda-2)^{3}+1+1-(\lambda-2)-(\lambda-2)-(\lambda-2) \\
& =(\lambda-2)\left(\lambda^{2}-4 \lambda+4-3\right)+2 \\
& =(\lambda-2)\left(\lambda^{2}-4 \lambda+1\right)+2 \\
& =\lambda^{3}-4 \lambda^{2}+\lambda-2 \lambda^{2}+8 \lambda-2+2 \\
& =\lambda^{3}-6 \lambda^{2}+9 \lambda=\lambda(\lambda-3)^{2}
\end{aligned}
$$

Therefore, the distinct eigenvalues are 0 and 3 .
For the eigenvalue 0 , the eigenvectors satisfy

$$
\left[\begin{array}{rrr}
-2 & 1 & -1 \\
1 & -2 & -1 \\
-1 & -1 & -2
\end{array}\right] \boldsymbol{x}=\mathbf{0}
$$

Note that

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
-2 & 1 & -1 \\
1 & -2 & -1 \\
-1 & -1 & -2
\end{array}\right] \xrightarrow{(1) \leftrightarrow(2)}\left[\begin{array}{rrr}
1 & -2 & -1 \\
-2 & 1 & -1 \\
-1 & -1 & -2
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
1 & -2 & -1 \\
-2 & 1 & -1 \\
-1 & -1 & -2
\end{array}\right] \xrightarrow{(2) \leftarrow(2+2 \cdot(1)+1 \cdot(1)}\left[\begin{array}{lll}
1 & -2 & -1 \\
0 & -3 & -3 \\
0 & -3 & -3
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & -2 & -1 \\
0 & -3 & -3 \\
0 & -3 & -3
\end{array}\right] \xrightarrow{(3) \leftarrow(3)-1 \cdot(2}\left[\begin{array}{rrr}
1 & -2 & -1 \\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & -2 & -1 \\
0 & -3 & -3 \\
0 & -3 & -3
\end{array}\right] \xrightarrow{(3) \leftarrow-\frac{1}{3} \cdot(3}\left[\begin{array}{rrr}
1 & -2 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
1 & -2 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{(1) \leftarrow(1)+2 \cdot(2)}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Therefore,

$$
\boldsymbol{x}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]
$$

is an eigenvector for eigenvalue 0. After normalizing, we obtain

$$
\boldsymbol{y}=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]
$$

For the eigenvalue 3 , the eigenvectors satisfy

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right] \boldsymbol{x}=\mathbf{0}
$$

Note that

$$
\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right] \xrightarrow{(2 \leftarrow(2)-1 \cdot(1)}\left[\begin{array}{llr}
(3)+1 \cdot(1)
\end{array}\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right.
$$

As such,

$$
\boldsymbol{x}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right] \quad \text { and } \quad \boldsymbol{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

are eigenvectors for the eigenvalue 3 . To orthonormalize these vectors, we first normalize \boldsymbol{x}_{1} :

$$
\boldsymbol{y}_{1}=\frac{1}{\left\|\boldsymbol{x}_{1}\right\|} \boldsymbol{x}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]
$$

Then, we find

$$
\boldsymbol{z}_{2}=\boldsymbol{x}_{2}-\left(\boldsymbol{y}_{1}^{T} \boldsymbol{x}_{2}\right) \boldsymbol{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Finally, we have

$$
\boldsymbol{y}_{2}=\frac{1}{\left\|\boldsymbol{z}_{2}\right\|} \boldsymbol{z}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Therefore, an orthogonal diagonalizer is

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right]
$$

Indeed, we have

$$
\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} .
\end{array}\right]=\left[\begin{array}{ccc}
0 & \frac{3}{\sqrt{2}} & \frac{3}{\sqrt{6}} \\
0 & -\frac{3}{\sqrt{2}} & \frac{3}{\sqrt{6}} \\
0 & 0 & \frac{6}{\sqrt{6}}
\end{array}\right]
$$

and

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} .
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{ccc}
0 & \frac{3}{\sqrt{2}} & \frac{3}{\sqrt{6}} \\
0 & -\frac{3}{\sqrt{2}} & \frac{3}{\sqrt{6}} \\
0 & 0 & \frac{6}{\sqrt{6}}
\end{array}\right]
$$

This means that

$$
\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} .
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} .
\end{array}\right]^{-1} .
$$

Let M be an 3×3 matrix with $p_{M}(\lambda)=\left(\lambda^{2}+\lambda+1\right)(\lambda-1)$.
(a) Find the eigenvalues of M.
(b) Find the trace and determinant of M.
(c) Can M be a Hermitian matrix? Justify your answer.
(d) Is M diagonalizable? Justify your answer.
(e) Find scalars a, b, c such that $M^{11112022}=a M^{2}+b M+c I$.
(f) Show that M is similar to M^{T}.

REQUIRED KNOWLEDGE: Charasteristic polynomial, eigenvalues, similarity, CayleyHamilton theorem.

SOLUTION:

4a: Since eigenvalues are the roots of the characteristic polynomial, we se that the eigenvalues of M are 1 and $-\frac{1}{2}(1 \mp i \sqrt{3})$.
$\mathbf{4 b}$: Since the trace is the sum and the determinant is the product of eigenvalues, we see that they are equal to, respectively, 0 and -1 .

4c: Since eigenvalues of Hermitian matrices are real, we see that M cannot be a Hermitian matrix.
$\mathbf{4 d}$: Since M has distinct eigenvalues, it is diagonalizable.
4e: Note that $p_{M}(\lambda)=\left(\lambda^{2}+\lambda+1\right)(\lambda-1)=\lambda^{3}-1$. Therefore, the Cayley-Hamilton theorem implies that $M^{3}=I$. Since $11112022=3 \cdot 3704007+1$, we have $M^{11112022}=M\left(M^{3}\right)^{3704007}=M$. Therefore, we see that $a=c=0$ and $b=1$.

4f: Since M is diagonalizable, there exist a nonsingular matrix X and a diagonal matrix D such that $M=X D X^{-1}$. This implies that

$$
\begin{equation*}
D=X^{-1} M X \quad \text { and } \quad M^{T}=\left(X^{-1}\right)^{T} D^{T} X^{T} \tag{1}
\end{equation*}
$$

Since D is diagonal, $D=D^{T}$. Therefore, we have $M^{T}=\left(X^{-1}\right)^{T} X^{-1} M X X^{T}$. Note that $\left(X X^{T}\right)^{-1}=\left(X^{-1}\right)^{T} X$. Consequently, M is similar to M^{T}.

